FUNCTIONAL CALCULUS AND SQUARE FUNCTIONS ON NONCOMMUTATIVE L p - SPACES
نویسنده
چکیده
In this work we investigate semigroups of operators acting on noncommutative L-spaces. We introduce noncommutative square functions and their connection to sectoriality, variants of Rademacher sectoriality, and H∞ functional calculus. We discuss several examples of noncommutative diffusion semigroups. This includes Schur multipliers, q-Ornstein-Uhlenbeck semigroups, and the noncommutative Poisson semigroup on free groups. 2000 Mathematics Subject Classification : Primary 47A60; Secondary 46L55, 46L69.
منابع مشابه
Kato’s Square Root Problem in Banach Spaces
Abstract. Let L be an elliptic differential operator with bounded measurable coefficients, acting in Bochner spaces Lp(Rn;X) of X-valued functions on Rn. We characterize Kato’s square root estimates ‖ √ Lu‖p h ‖∇u‖p and the H-functional calculus of L in terms of R-boundedness properties of the resolvent of L, when X is a Banach function lattice with the UMD property, or a noncommutative Lp spac...
متن کاملConical Square Function Estimates in Umd Banach Spaces and Applications to H∞-functional Calculi
We study conical square function estimates for Banach-valued functions, and introduce a vector-valued analogue of the Coifman–Meyer–Stein tent spaces. Following recent work of Auscher–MIntosh–Russ, the tent spaces in turn are used to construct a scale of vector-valued Hardy spaces associated with a given bisectorial operator A with certain off-diagonal bounds, such that A always has a bounded H...
متن کاملPaley-Littlewood decomposition for sectorial operators and interpolation spaces
We prove Paley-Littlewood decompositions for the scales of fractional powers of 0-sectorial operators A on a Banach space which correspond to Triebel-Lizorkin spaces and the scale of Besov spaces if A is the classical Laplace operator on L(R). We use the H∞calculus, spectral multiplier theorems and generalized square functions on Banach spaces and apply our results to Laplace-type operators on ...
متن کاملNotes on Topology for Functional Analysis
What is it that one analyzes in functional analysis? Very often the analysis involves functions defined on a domain in an infinite dimensional vector space with values in the field, R or C, over which the vectors space is defined. Since the elements of these infinite dimensional vector spaces are often functions themselves; e.g., the vectors space may consist of square integrable functions on [...
متن کامل2 1 Fe b 20 06 On the hermiticity of q - differential operators and forms on the quantum Euclidean spaces R Nq
We show that the complicated ⋆-structure characterizing for positive q the Uqso(N)-covariant differential calculus on the non-commutative manifold Rq boils down to similarity transformations involving the ribbon element of a central extension of Uqso(N) and its formal square root ṽ. Subspaces of the spaces of functions and of p-forms on Rq are made into Hilbert spaces by introducing non-convent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006